Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.244
Filtrar
1.
Sci Rep ; 14(1): 10433, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714696

RESUMO

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Assuntos
Astrócitos , Encéfalo , Toxoplasma , Animais , Astrócitos/metabolismo , Astrócitos/parasitologia , Astrócitos/patologia , Camundongos , Toxoplasma/patogenicidade , Toxoplasma/fisiologia , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Doença Crônica , Polaridade Celular , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Cerebral/patologia , Toxoplasmose Cerebral/metabolismo
2.
Front Mol Neurosci ; 17: 1361956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726307

RESUMO

Synapses play a pivotal role in forming neural circuits, with critical implications for brain functions such as learning, memory, and emotions. Several advances in synaptic research have demonstrated the diversity of synaptic structure and function, which can form thousands of connections depending on the neuronal cell types. Moreover, synapses not only interconnect neurons but also establish connections with glial cells such as astrocytes, which play a key role in the architecture and function of neuronal circuits in the brain. Emerging evidence suggests that dysfunction of synaptic proteins contributes to a variety of neurological and psychiatric disorders. Therefore, it is crucial to determine the molecular networks within synapses in various neuronal cell types to gain a deeper understanding of how the nervous system regulates brain function. Recent advances in synaptic proteome approaches, such as fluorescence-activated synaptosome sorting (FASS) and proximity labeling, have allowed for a detailed and spatial analysis of many cell-type-specific synaptic molecules in vivo. In this brief review, we highlight these novel spatial proteomic approaches and discuss the regulation of synaptic formation and function in the brain. This knowledge of molecular networks provides new insight into the understanding of many neurological and psychiatric disorders.

3.
J Leukoc Biol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700080

RESUMO

Precise synapse elimination is essential for the establishment of a fully developed neural circuit during brain development and higher function in adult brain. Beyond immune and nutrition support, recent groundbreaking studies have revealed that phagocytic microglia and astrocytes can actively and selectively eliminate synapses in normal and diseased brains, thereby mediating synapse loss and maintaining circuit homeostasis. Multiple lines of evidence indicate that the mechanisms of synapse elimination by phagocytic glia are not universal but rather depend on specific contexts and detailed neuron-glia interactions. The mechanism of synapse elimination by phagocytic glia is dependent on neuron-intrinsic factors, many innate immune and local apoptosis related molecules. During development, microglial synapse engulfment in the visual thalamus is primarily influenced by the classic complement pathway, whereas in the barrel cortex, the fractalkine pathway is dominant. In Alzheimer's disease, microglia employ complement-dependent mechanisms for synapse engulfment in tauopathy and early ß-amyloid pathology. But microglia are not involved in synapse loss at late ß-amyloid stages. Phagocytic microglia also engulfment synapses in complement dependent way in schizophrenia, anxiety and stress. Besides, phagocytic astrocytes engulf synapses in a MEGF10 dependent way during visual development, memory and stroke. Furthermore, the mechanism of a phenomenon that phagocytes selectively eliminating excitatory and inhibitory synapses is also emphasized in this review. We hypothesize that elucidating context-dependent synapse elimination by phagocytic microglia and astrocytes may reveal the molecular basis of synapse loss in neural disorders and provide a rationale for developing novel candidate therapies that target synapse loss and circuit homeostasis.

4.
Neurochem Res ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733521

RESUMO

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.

5.
Mol Biol Rep ; 51(1): 654, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735002

RESUMO

BACKGROUND: Cervical cancer is a common gynecologic malignant tumor, but the critical factors affecting cervical cancer progression are still not well demonstrated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been widely recognized as an anti-inflammatory factor to regulate macrophage polarization. In this study, the effect and mechanism of MANF on cervical cancer were preliminarily explored. METHODS AND RESULTS: Kaplan-Meier curve was used to show the overall survival time of the involved cervical cancer patients with high and low MANF expression in cervical cancer tissues. MANF was highly expressed in peritumoral tissues of cervical carcinoma by using immunohistochemistry and western blot. MANF mRNA level was detected by using qRT-PCR. Dual-labeled immunofluorescence showed MANF was mainly expressed in macrophages of cervical peritumoral tissues. Moreover, MANF-silenced macrophages promoted HeLa and SiHa cells survival, migration, invasion and EMT via NF-κB signaling activation. The results of tumor formation in nude mice indicated MANF-silenced macrophages promoted cervical tumor formation in vivo. CONCLUSION: Our study reveals an inhibitory role of MANF in cervical cancer progression, indicating MANF as a new and valuable therapeutic target for cervical cancer treatment.


Assuntos
Progressão da Doença , Macrófagos , Camundongos Nus , Fatores de Crescimento Neural , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Animais , Macrófagos/metabolismo , Camundongos , Movimento Celular/genética , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Fenótipo , Células HeLa , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Pessoa de Meia-Idade
6.
Cogn Neurodyn ; 18(2): 485-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699615

RESUMO

Glutamate (Glu) is a predominant excitatory neurotransmitter that acts on glutamate receptors to transfer signals in the central nervous system. Abnormally elevated extracellular glutamate levels is closely related to the generation and transition of epileptic seizures. However, there lacks of investigation regarding the role of extracellular glutamate homeostasis dysregulated by astrocyte in neuronal epileptic discharges. According to this, we propose a novel neuron-astrocyte computational model (NAG) by incorporating extracellular Glu concentration dynamics from three aspects of regulatory mechanisms: (1) the Glu uptake through astrocyte EAAT2; (2) the binding and release Glu via activating astrocyte mGluRs; and (3) the Glu free diffusion in the extracellular space. Then the proposed model NAG is analyzed theoretically and numerically to verify the effect of extracellular Glu homeostasis dysregulated by such three regulatory mechanisms on neuronal epileptic discharges. Our results demonstrate that the neuronal epileptic discharges can be aggravated by the downregulation expression of EAAT2, the aberrant activation of mGluRs, and the elevated Glu levels in extracellular micro-environment; as well as various discharge states (including bursting, mixed-mode spiking, and tonic firing) can be transited by their combination. Furthermore, we find that such factors can also alter the bifurcation threshold for the generation and transition of epileptic discharges. The results in this paper can be helpful for researchers to understand the astrocyte role in modulating extracellular Glu homeostasis, and provide theoretical basis for future related experimental studies.

7.
Cogn Neurodyn ; 18(2): 503-518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699624

RESUMO

Random fluctuations are inescapable feature in biological systems, but appropriate intensity of randomness can effectively facilitate information transfer and memory encoding within the nervous system. In the study, a modified spiking neuron-astrocyte network model with excitatory-inhibitory balance and synaptic plasticity is established. This model considers external input noise, and allows investigating the effects of intrinsic random fluctuations on working memory tasks. It is found that the astrocyte network, acting as a low-pass filter, reduces the noise component of the total input currents and improves the recovered images. The memory performance is enhanced by selecting appropriate intensity of random fluctuations, while excessive intensity can inhibit signal transmission of network. As the intensity of random fluctuations gradually increases, there exists a maximum value of the working memory performance. The cued recall of the network markedly decreases excessive input noise relative to test images. Meanwhile, a greater contrast effect is observed as the external input noise increases. In addition, synaptic plasticity reduces the firing rates and firing peaks of neurons, thus stabilizing the working memory activity during the test. The outcomes of this study may provide some inspirations for comprehending the role of random fluctuations in working memory mechanisms and neural information processing within the cerebral cortex.

8.
Mol Neurobiol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713438

RESUMO

Microglia and astrocytes are key players in neuroinflammation and ischemic stroke. A1 astrocytes are a subtype of astrocytes that are extremely neurotoxic and quickly kill neurons. Although the detrimental A1 astrocytes are present in many neurodegenerative diseases and are considered to accelerate neurodegeneration, their role in the pathophysiology of ischemic stroke is poorly understood. Here, we combined RNA-seq, molecular and immunological techniques, and behavioral tests to investigate the role of A1 astrocytes in the pathophysiology of ischemic stroke. We found that astrocyte phenotypes change from a beneficial A2 type in the acute phase to a detrimental A1 type in the chronic phase following ischemic stroke. The activated microglial IL1α, TNF, and C1q prompt commitment of A1 astrocytes. Inhibition of A1 astrocytes induction attenuates reactive gliosis and ameliorates morphological and functional defects following ischemic stroke. The crosstalk between astrocytic C3 and microglial C3aR contributes to the formation of A1 astrocytes and morphological and functional defects. In addition, NF-κB is activated following ischemic stroke and governs the formation of A1 astrocytes via direct targeting of inflammatory cytokines and chemokines. Taken together, we discovered that A2 astrocytes and A1 astrocytes are enriched in the acute and chronic phases of ischemic stroke respectively, and that the C3/C3aR/NF-κB signaling leads to A1 astrocytes induction. Therefore, the C3/C3aR/NF-κB signaling is a novel therapeutic target for ischemic stroke treatment.

9.
J Neurochem ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702968

RESUMO

Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.

10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167211, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701957

RESUMO

The interaction between glioma cells and astrocytes promotes the proliferation of gliomas. Micro-RNAs (miRNAs) carried by astrocyte exosomes (exos) may be involved in this process, but the mechanism remains unclear. The oligonucleotide AS1411, which consists of 26 bases and has a G-quadruplex structure, is an aptamer that targets nucleolin. In this study, we demonstrate exosome-miRNA-27a-mediated cross-activation between astrocytes and glioblastoma and show that AS1411 reduces astrocytes' pro-glioma activity. The enhanced affinity of AS1411 toward nucleolin is attributed to its G-quadruplex structure. After binding to nucleolin, AS1411 inhibits the entry of the NF-κB pathway transcription factor P65 into the nucleus, then downregulates the expression of miRNA-27a in astrocytes surrounding gliomas. Then, AS1411 downregulates astrocyte exosome-miRNA-27a and upregulates the expression of INPP4B, the target gene of miRNA-27a in gliomas, thereby inhibiting the PI3K/AKT pathway and inhibiting glioma proliferation. These results were verified in mouse orthotopic glioma xenografts and human glioma samples. In conclusion, the parallel structure of AS1411 allows it to bind to nucleolin and disrupt the exosome-miRNA-27a-mediated reciprocal activation loop between glioma cells and astrocytes. Our results may help in the development of a novel approach to therapeutic modulation of the glioma microenvironment.

11.
J Affect Disord ; 358: 211-221, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705530

RESUMO

BACKGROUND: Neuroinflammation is involved in the advancement of depression. Du-moxibustion can treat depression. Here, we explored whether Du-moxibustion could alleviate neuroglia-associated neuro-inflammatory process in chronic unpredictable mild stress (CUMS) mice. METHODS: C57BL/6J mice were distributed into five groups. Except for the CON group, other four groups underwent CUMS for four consecutive weeks, and Du-moxibustion was given simultaneously after modeling. Behavioral tests were then carried out. Additionally, Western blot was conducted to measure the relative expression levels of high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB). Immunofluorescence was employed to evaluate the positive cells of ionized calcium binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP). Furthermore, interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) were analyzed using an ELISA assay. RESULTS: We found that CUMS induced depression-like behaviors, such as reduced sucrose preference ratio, decreased locomotor and exploratory activity, decreased the time in open arms and prolonged immobility. Furthermore, versus the CON group, the expression of HMGB1, TLR4, MyD88, NF-κB, positive cells of Iba-1, IL-1ß and TNF-α were increased but positive cells of GFAP were decreased in CUMS group. However, the detrimental effects were ameliorated by treatment with CUMS+FLU and CUMS+DM. LIMITATIONS: A shortage of this study is that only CUMS model of depression were used, while other depression model were not included. CONCLUSIONS: Du-moxibustion alleviates depression-like behaviors in CUMS mice mainly by reducing neuroinflammation, which offers novel insights into the potential treatment of depression.

12.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727275

RESUMO

ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Sistema Nervoso Central , Neuroglia , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia
13.
Neuroscience ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718916

RESUMO

Energy metabolism in the brain has been considered one of the critical research areas of neuroscience for ages. One of the most vital parts of brain metabolism cascades is lipid metabolism, and fatty acid plays a crucial role in this process. The fatty acid breakdown process in mitochondria undergoes through a conserved pathway known as ß-oxidation where acetyl-CoA and shorter fatty acid chains are produced along with a significant amount of energy molecule. Further, the complete breakdown of fatty acids occurs when they enter the mitochondrial oxidative phosphorylation. Cells store energy as neutral lipids in organelles known as Lipid Droplets (LDs) to prepare for variations in the availability of nutrients. Fatty acids are liberated by lipid droplets and are transported to various cellular compartments for membrane biogenesis or as an energy source. Current research shows that LDs are important in inflammation, metabolic illness, and cellular communication. Lipid droplet biology in peripheral organs like the liver and heart has been well investigated, while the brain's LDs have received less attention. Recently, there has been increased awareness of the existence and role of these dynamic organelles in the central nervous system, mainly connected to neurodegeneration. In this review, we discussed the role of beta-oxidation and lipid droplet formation in the oxidative phosphorylation process, which directly affects neurodegeneration through various pathways.

14.
CNS Neurosci Ther ; 30(5): e14726, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715251

RESUMO

AIMS: The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS: We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS: Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION: Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.


Assuntos
Astrócitos , Hipotermia , Nociceptividade , Área Pré-Óptica , Animais , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Nociceptividade/fisiologia , Hipotermia/induzido quimicamente , Masculino , Camundongos , Receptores Purinérgicos P1/metabolismo , Camundongos Endogâmicos C57BL , Adenosina/metabolismo , Capsaicina/farmacologia , Formaldeído/toxicidade , Formaldeído/farmacologia
15.
Methods Mol Biol ; 2799: 201-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727909

RESUMO

Neuronal N-methyl-D-aspartate (NMDA) receptors are well known for their pivotal role in memory formation. Originally, they were thought to be exclusive to neurons. However, numerous studies revealed their functional expression also on various types of glial cells in the nervous system. Here, the methodology on how to study the physiology of NMDA receptors selectively on astrocytes will be described in detail. Astrocytes are the main class of neuroglia that control transmitter and ion homeostasis, which link cerebral blood flow and neuronal energy demands, but also affect synaptic transmission directly.


Assuntos
Astrócitos , Receptores de N-Metil-D-Aspartato , Astrócitos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Camundongos , Técnicas de Patch-Clamp/métodos , Células Cultivadas , Neurônios/metabolismo , Ratos
16.
Cell Rep ; 43(5): 114193, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38709635

RESUMO

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.

17.
Acta Neuropathol ; 147(1): 78, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695952

RESUMO

Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater ß-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for ß-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased ß-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.


Assuntos
Doença de Alzheimer , Senescência Celular , Transcriptoma , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Senescência Celular/fisiologia , Senescência Celular/genética , Idoso , Masculino , Idoso de 80 Anos ou mais , Feminino , Microglia/patologia , Microglia/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neuroglia/patologia , Neuroglia/metabolismo
18.
medRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38699303

RESUMO

Background: Single-cell technologies have unveiled various transcriptional states in different brain cell types. Transcription factors (TFs) regulate the expression of related gene sets, thereby controlling these diverse expression states. Apolipoprotein E (APOE), a pivotal risk-modifying gene in Alzheimer's disease (AD), is expressed in specific glial transcriptional states associated with AD. However, it is still unknown whether the upstream regulatory programs that modulate its expression are shared across brain cell types or specific to microglia and astrocytes. Methods: We used pySCENIC to construct state-specific gene regulatory networks (GRNs) for resting and activated cell states within microglia and astrocytes based on single-nucleus RNA sequencing data from AD patients' cortices from the Knight ADRC-DIAN cohort. We then identified replicating TF using data from the ROSMAP cohort. We identified sets of genes co-regulated with APOE by clustering the GRN target genes and identifying genes differentially expressed after the virtual knockout of TFs regulating APOE. We performed enrichment analyses on these gene sets and evaluated their overlap with genes found in AD GWAS loci. Results: We identified an average of 96 replicating regulators for each microglial and astrocyte cell state. Our analysis identified the CEBP, JUN, FOS, and FOXO TF families as key regulators of microglial APOE expression. The steroid/thyroid hormone receptor families, including the THR TF family, consistently regulated APOE across astrocyte states, while CEBP and JUN TF families were also involved in resting astrocytes. AD GWAS-associated genes (PGRN, FCGR3A, CTSH, ABCA1, MARCKS, CTSB, SQSTM1, TSC22D4, FCER1G, and HLA genes) are co-regulated with APOE. We also uncovered that APOE-regulating TFs were linked to circadian rhythm (BHLHE40, DBP, XBP1, CREM, SREBF1, FOXO3, and NR2F1). Conclusions: Our findings reveal a novel perspective on the transcriptional regulation of APOE in the human brain. We found a comprehensive and cell-type-specific regulatory landscape for APOE, revealing distinct and shared regulatory mechanisms across microglia and astrocytes, underscoring the complexity of APOE regulation. APOE-co-regulated genes might also affect AD risk. Furthermore, our study uncovers a potential link between circadian rhythm disruption and APOE regulation, shedding new light on the pathogenesis of AD.

19.
Adv Sci (Weinh) ; : e2402287, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711218

RESUMO

Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.

20.
J Neuroinflammation ; 21(1): 81, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566081

RESUMO

BACKGROUND: Senescent astrocytes play crucial roles in age-associated neurodegenerative diseases, including Parkinson's disease (PD). Metformin, a drug widely used for treating diabetes, exerts longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. METHODS: Long culture-induced replicative senescence model and 1-methyl-4-phenylpyridinium/α-synuclein aggregate-induced premature senescence model, and a mouse model of PD were used to investigate the effect of metformin on astrocyte senescence in vivo and in vitro. Immunofluorescence staining and flow cytometric analyses were performed to evaluate the mitochondrial function. We stereotactically injected AAV carrying GFAP-promoter-cGAS-shRNA to mouse substantia nigra pars compacta regions to specifically reduce astrocytic cGAS expression to clarify the potential molecular mechanism by which metformin inhibited the astrocyte senescence in PD. RESULTS: We showed that metformin inhibited the astrocyte senescence in vitro and in PD mice. Mechanistically, metformin normalized mitochondrial function to reduce mitochondrial DNA release through mitofusin 2 (Mfn2), leading to inactivation of cGAS-STING, which delayed astrocyte senescence and prevented neurodegeneration. Mfn2 overexpression in astrocytes reversed the inhibitory role of metformin in cGAS-STING activation and astrocyte senescence. More importantly, metformin ameliorated dopamine neuron injury and behavioral deficits in mice by reducing the accumulation of senescent astrocytes via inhibition of astrocytic cGAS activation. Deletion of astrocytic cGAS abolished the suppressive effects of metformin on astrocyte senescence and neurodegeneration. CONCLUSIONS: This work reveals that metformin delays astrocyte senescence via inhibiting astrocytic Mfn2-cGAS activation and suggest that metformin is a promising therapeutic agent for age-associated neurodegenerative diseases.


Assuntos
Metformina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Astrócitos/metabolismo , Neurônios Dopaminérgicos , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...